Learning from Label Proportions by Optimizing Cluster Model Selection

نویسندگان

  • Marco Stolpe
  • Katharina Morik
چکیده

In a supervised learning scenario, we learn a mapping from input to output values, based on labeled examples. Can we learn such a mapping also from groups of unlabeled observations, only knowing, for each group, the proportion of observations with a particular label? Solutions have real world applications. Here, we consider groups of steel sticks as samples in quality control. Since the steel sticks cannot be marked individually, for each group of sticks it is only known how many sticks of high (low) quality it contains. We want to predict the achieved quality for each stick before it reaches the final production station and quality control, in order to save resources. We define the problem of learning from label proportions and present a solution based on clustering. Our method empirically shows a better prediction performance than recent approaches based on probabilistic SVMs, Kernel k-Means or conditional exponential models.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Domain Adaptation for Learning from Label Proportions Using Self-Training

Learning from Label Proportions (LLP) is a machine learning problem in which the training data consist of bags of instances, and only the class label distribution for each bag is known. In some domains label proportions are readily available; for example, by grouping social media users by location, one can use census statistics to build a classifier for user demographics. However, label proport...

متن کامل

Learning Word Sense With Feature Selection and Order Identification Capabilities

This paper presents an unsupervised word sense learning algorithm, which induces senses of target word by grouping its occurrences into a “natural” number of clusters based on the similarity of their contexts. For removing noisy words in feature set, feature selection is conducted by optimizing a cluster validation criterion subject to some constraint in an unsupervised manner. Gaussian mixture...

متن کامل

MLIFT: Enhancing Multi-label Classifier with Ensemble Feature Selection

Multi-label classification has gained significant attention during recent years, due to the increasing number of modern applications associated with multi-label data. Despite its short life, different approaches have been presented to solve the task of multi-label classification. LIFT is a multi-label classifier which utilizes a new strategy to multi-label learning by leveraging label-specific ...

متن کامل

On the Complexity of Learning from Label Proportions

In the problem of learning with label proportions (also known as the problem of estimating class ratios), the training data is unlabeled, and only the proportions of examples receiving each label are given. The goal is to learn a hypothesis that predicts the proportions of labels on the distribution underlying the sample. This model of learning is useful in a wide variety of settings, including...

متن کامل

Improving the Performance of Machine Learning Algorithms for Heart Disease Diagnosis by Optimizing Data and Features

Heart is one of the most important members of the body, and heart disease is the major cause of death in the world and Iran. This is why the early/on time diagnosis is one of the significant basics for preventing and reducing deaths of this disease. So far, many studies have been done on heart disease with the aim of prediction, diagnosis, and treatment. However, most of them have been mostly f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011